

UPES-50A Analog 4-20mA Multi-Channel Controller Operating Manual

1.	Basic Specifications	4
2.	UPES Device	6
3.	UPES Operation Modes with IPES Fire Detectors and Gas Detectors Connected	8
	4.1 UPES operation modes with IPES connected	8
	4.2 UPES operation modes of with gas detector connected	10
4.	Pre-starting Procedure	14
5.	Operating Procedure	15
6.	Channel Parameters. Working with Menu	17
	Flow-chart of the selected menu:	17
	Channel Programming	18
	Programming of Channel Operation Simulation Mode	21
	Programming of Channel Calibration Mode	22
	Programming of Channel Configuration Copying Mode	24
	UPES Device Programming	25
	Programming and Calibration of Values for UPES Measurement Channels according t	o Gas
	Туре	26
7.	Check of UPES Operation via RS-485 Communication Channel	31
8.	Common Troubles and Remedies	33
9.	Power cable. Connection diagram	34
10.	Marking	34
11.	Transportation and Storage	34
12.	Acceptance Certificate	34
13.	Warranty	35
14.	Maintenance	35
	Annex 1. SGOES Gas Detector and UPES Interconnection Diagram	36
	Annex 2. SGOES-M11 and UPES Interconnection Diagram	37
	Annex 3. CCC-903 SSS-903 Gas Detector and UPES Interconnection Diagram	38
	Annex 4. SSS-903 M(ME) and UPES Interconnection Diagram	39
	Annex 5. IPES and UPES Interconnection Diagram	40
	Annex 6. Preventive Maintenance during UPES Operation	43

Designation

UPES-50A (hereinafter – UPES) is designed to operate with primary detectors via 4-20mA unified analog signals. The input signal exceedance of the set threshold levels is controlled by audible and LED alarms as well as connected peripheral devices via relay outputs for RS-485 interface transmission of all channel data in Modbus RTU protocol format.

UPES is installed outside the explosion hazard zone and shall be operated at temperatures from - 10 to 45 °C and relative ambient air humidity up to 95% at 35°C.

UPES-50A functional capabilities enable to power up to 16 primary detectors:

- SGOES
- SGOES-M
- SGOES-M11
- SGOES-2
- SGOES-M-2
- SGOES-M11-2
- SSS-903
- SSS-903M
- SSS-903ME
- IPES IR/UV
- IPES IKM
- -VECTOR FCU

1. Basic Specifications

Table 1. Basic Specifications

Relative humidity at temperature 35 °C, %	up to 95				
Ambient temperature range	from -10 up to +45 °C				
Input voltage range with various power	power supply	187-242 V 50 Hz (main power) or			
supply units	unit of BP-1	direct current with voltage			
	design	18-32 V (backup power)			
	power supply	130-242 V 50 Hz (main power) or			
	unit of BP-10	direct current with voltage			
	design	180-340 V (backup power)			
UPES power from DC power supply with	24	<u>.</u>			
voltage not more than, V					
UPES commutated current at AC voltage 220	up to 3				
V, A					
Length, mm	266				
Width, mm	482				
Height, mm	132				
Weight, kg, not more than	17				
Ingress protection	IP54				
acc. to GOST 14254-96					

Fig. 1. UPES dimensions

UPES control panel is designed as a standard 3U19"- type unit to be mounted in a rack

2. UPES Device

Fig.2. UPES Device

- 1. CPU board
- 2. 8 channel boards with 2 communications lines 4-20 mA
- 3. Power supply unit

Fig.2.1. Front View

- 1. Interconnection board
- 2. Blind panel

Fig. 2.2. UPES Rear View

- 4. Main power socket, 220V input voltage
- 5. Backup power socket, 220V input voltage.
- 6. Fault relay
- 7. Third threshold relay
- 8. Ground terminal

Each channel of the threshold device has a corresponding LED group:

1 green – the channel is ON;

3 red – the set thresholds are exceeded;

1 yellow – the channel is defective.

Moreover, in case of concentrations of any threshold of any channel are exceeded, an audible alarm, which is built in UPES, is activated.

3. UPES Operation Modes with IPES Fire Detectors and Gas Detectors Connected

4.1 UPES operation modes with IPES connected

When operating with IPES fire detector, UPES indicator displays the following messages depending on the value of primary detector analog output:

- · Signal 2 ± 0.1 mA "Fault" message is displayed;
- Signal 4±0.1 mA "Norma" message is displayed;
- Signal $18\pm0.1 \text{ mA} \text{``Fire''}$ message is displayed.

Fig. 3. UPES standby mode with IPES connected

Fig. 3.1. Fire indication accompanied by audible alarm.

Fig. 3.2 IPES fault (dust condition), UPES indication fault display. Accompanied by audible alarm.

Fig. 3.3 When a magnet key is brought next to IPES, the device becomes faulty. UPES display indication is accompanied by audible alarm.

Fig. 3.4. UPES indication in case of loss of communication with IPES. Accompanied by audible alarm.

4.2 UPES operation modes of with gas detector connected

When operating with gas detectors, UPES indicator displays the following messages depending on the value of primary detector analog output:

- Signal from 0 mA to 1.8 mA "No Signal" message is displayed;
- Signal from 1.8 mA to 2.2 mA "Fault" message is displayed;
- Signal from 2.2 mA to 3.5 mA "Need Calibration";
- Signal from 3.5 mA to 4 mA measured concentration value 0;
- Signal from 4 mA to 23 mA measured concentration value;
- Signal from 23 mA to 24 mA "Excess Over" message is displayed;

Fig.4. UPES-50A and gas detector standby mode

Fig.4.1. "No Signal" indication. Accompanied by audible alarm

Fig. 4.2. "Fault" indication. Accompanied by audible alarm

Fig. 4.3. "Need Calibration" indication. Accompanied by audible alarm

1) Excess of the first threshold

2) Excess of the second threshold

3) Excess of the third threshold

Fig. 4.5 "Excess Over" indication. Accompanied by audible alarm

When the first, second and third thresholds are exceeded, RL1, RL2, RL3 relays are triggered with a delay (installed at the request of the customer) after activation of P1, P2 and P3 LEDs. RL1 and RL2 relay contacts are output to spiral terminal connectors, located on each measurement unit. RL3 relay is common to all 16 channels. Its normally closed and normally open "dry" contacts are output to the spiral terminal connector at the rear of the control panel power supply unit and have the "RL3" inscription.

In case of failure of one or more channels (communication line break, short-circuit, negative-going signal), the fault relay is activated. Its contacts are output to the spiral terminal connector at the rear of the control panel power supply unit (inscription "DEF"). If a malfunction occurs in at least one channel, the relay is activated and the contacts get open.

4. Pre-starting Procedure

5.1 Prior to installation it is necessary to perform visual inspection. Pay attention to the following:

1) signs of damages;

2) availability of all fixture elements;

3) availability of grounding devices.

5.2 Installation shall be performed in accordance with a duly established project of onsite allocation pursuant to the installation diagram with due account for threshold device design. When performing installation, consider the following:

1) Electrical Installation Regulations

2) Regulations on Consumer Electrical Installation Operation

3) Safety Regulations on Consumer Electrical Installation Operation

4) This manual.

5.3 In order to connect UPES to a personal computer via RS-485 communication channel, it is possible to use any shielded twisted pair. In this case, signal wires are connected to contacts "485A" and "485B", and the shield is connected to contact "GND", located at the terminal block on the controller module rear side. 6.4 In order to connect UPES to the network and external actuation and signaling devices, it is possible to use any cables, cords or wires rated for operational voltage and current specified in this OM.

5.5 UPES shall be grounded by means of a screw clamp located at the bottom of the power unit rear wall. Upon completion of installation, check the following: - insulation resistance, which shall be not less than 0.5 MOhm; - grounding device resistance, which shall be not less than 40hm.

5.6 When installing UPES, provide free space above and under it in a rack with height not less than the threshold device height (132 mm).

5. Operating Procedure

6.1 Switch the threshold device to the mains and check its operability. To do this, loosen two screws on the top of the UPES face panel, turn the face panel down and push ON button.

6.2 UPES has three operation modes: test, normal indication and programming.

6.2.1 The test mode is implemented automatically upon each activation of the device as well as when the operator pushes the "TEST/RESET" button. The test takes about 30 seconds. Upon this, in the upper line of the indicator words "AUTOTEST" and "ELECTRONSTANDART" are alternatively displayed, and in the bottom line software version is displayed; "Def", "Π1", "Π2", "Π3" LEDs blink and the buzzer gives a continuous sound. The operator can stop the test mode by pushing the "CONTR" button. In this case the device is switched to the normal indication mode.

6.2.2 When in the normal indication mode, "Channel **" is displayed in the upper line of the indicator, while in the lower line the following is displayed: gas concentration in units: "LEL" or "mg" or "%" or "ppm" and name of the measured gas (CH4, CO, H2S, NO, NO2, SO2, Cl2, H2, HCl, CO2, C4H10, C3H8, C2H2 etc.). If in the normal indication mode a signal in any channel does not exceed the first threshold, in ~10 seconds an automatic polling of the channels is performed. When flame detectors are connected, the word "Channel **"," is displayed in the upper line of the indicator, and on the bottom line "Norm" is displayed.

If a signal in one or several channels exceeds the signal corresponding to the first threshold or is less than ~2.0mA (which corresponds to breakage or short circuit in the measuring channel), only this channels are automatically polled.

6.2.3 The channel number is selected by using buttons "+" and "-", the indication number of this channel is stored in the indicator during 1 min, then in 10 sec an automatic polling takes place.

Check of UPES operation with available reserve power source

To switch UPES, push (and hold within 2 sec) the ON button on the front panel of the device after main and reserve power voltage is supplied.

The power supply unit controls output voltages of primary power detector and their absorbed current as well as controls voltages of all secondary power sources that shall be within the prescribed limits. In case any of the parameters goes beyond the prescribed limits, red light indication on the UPES front panel and audible alarm are activated and 24 V power dump takes place.

The power supply unit intactness control system has an individual secondary power source and a 5V reserve source with rated operation time of up to 30 seconds. If the main and reserve power

are available and no failures are detected as well as if UPES is powered ON, no sound signal is given and the ON button light up in green continuous light.

If the button illumination LED blinks with any color at frequency 1 Hz, it means that the power supply unit is OFF.

If the button illumination LED blinks with red color at frequency 1 Hz, it means that the power supply unit is OFF due to power unit failure or overload of secondary power supply units.

If the button illumination LED blinks with yellow color at frequency 1 Hz, it means that the power supply unit is OFF, but one of the input voltages (reserve or main) is not available.

If the button illumination LED glows in a continuous manner (any color), it means that the power supply unit is ON.

If the button illumination LED glows in a continuous manner (yellow color), it means that the power supply unit is ON, but one of the input voltages (reserve or main) is not available. When the power unit operates from the reserve source, short sound signals at frequency 1 Hz are emitted.

In all modes, connection or disconnection of any input voltage is announced by one sound signal, which last for 1 sec.

Mode of indication	UPES power status
UPES ON button blinks green	UPES is not switched on
UPES ON button blinks yellow	UPES is not switched on
	One of 220V input voltages is not available
UPES ON button glows green	UPES is switched on.
	Power voltages (main and reserve) are connected and
	are OK.
	Output voltages of primary detectors are OK.
	Output voltages of secondary detectors are OK.
UPES ON button glows yellow	UPES is switched on.
Short sound signals are emitted once per	Power from reserve power source 220V
second	
UPES ON button glows yellow	UPES is switched on.
No sound signals	Power from primary power source 220V

Table 2. Indication of ЖСКФ.436231.010 power unit operation modes

In all modes, connection or disconnection of input voltages is announced by one sound signal of 1 sec.

To install the face panel and tighten the loosen screws.

6. Channel Parameters. Working with Menu

Push "PROGR." in the bottom (UPES) – the user can view current values of channel parameters for the requested time.

Flow-chart of the selected menu:

The device can be programmed via five menus:

- channel programming;
- simulation programming;
- calibration programming;
- device copying;
- device programming.

The required menu is selected according to a cyclogram.

Channel Programming

Programming of Channel Operation Simulation Mode

The menu of channel operation simulation enables to test operation of light and audible alarm and channel relays in case of threshold activation. Select menu "Channel x Simulation". Press button "PROG" The channel will go to the simulation mode. Use the "+" and "-" buttons to set the desired concentration value and monitor actuation of the light and audible alarm of thresholds and relays upon exceeding of threshold concentration (the threshold is set for actuation in case of exceeding threshold value concentration) or decrease in threshold concentration (the threshold is set for actuation in case of decrease in threshold value concentration). The set concentration value varies in the range from the lower limit of the measured sensor range to the upper limit of the measured sensor range + (upper limit of the measured sensor range * 0.1). In the bottom indicator line before the set concentration value character "S" is displayed, which means that the channel is in the simulation mode. In order to exit the simulation mode, press the "PROG" button or "Contr./Exit" button.

Programming of Channel Calibration Mode

The channel calibration menu enables to set precision of channel board measurement. Select menu "Channel x Calibration". Press the "PROG" button to go to the menu of concentration measurement accuracy test. In this mode, in the bottom line in front of the measured concentration value, symbol "C" is displayed, which means that the channel is in the calibration mode. In the calibration mode threshold alarms and relays are not actuated. If the channel measurement accuracy is not satisfactory, press the "Prog." button to go to the mode of zero offset calibration mode. If the channel measurement accuracy is satisfactory, you can exit the menu by pressing "Conr./Exit"

Zero offset calibration menu. The upper line of this menu displays channel number and parameter which characterizes a zero offset conventional value. The bottom line displays symbol "C0" which designates zero offset calibration, measured concentration value, units of measurement and gas type. Use buttons "+" and "-" to change the zero offset conventional value and control the measured concentration value. When you get accurate measurement of concentration by the channel, press the "Test/Enter" button to record the zero offset conventional value in the nonvolatile memory of the channel board.

Channel sensibility calibration menu. This menu is similar to the zero offset calibration menu. In the upper right corner a conventional value is displayed which characterizes channel sensibility. In the bottom line, before the concentration value, symbol "C1" is displayed, which designates sensibility calibration. To exit the menu, press the "PROG" button or "Conr./Exit" button.

Programming of Channel Configuration Copying Mode

UPES provides opportunity for channel copying. To do this, select menu "Channel x Copying". In this menu it is possible copy channel settings into any other channel available in the system. Press the "Prog." button, in the "Channel x Copying" menu use buttons "+" and "-" to select the desired channel to which you want to copy the settings and press the "Test\Enter" button. After the data are copied into the channel board, the number of the channel to which the settings were copied will be displayed in square brackets. When copying channel settings, the following data are copied:

- Gas type;
- Units of measurement;
- Measurement accuracy;
- Settings for threshold and relay triggering modes;
- Threshold values;
- Detector measurement range;

UPES Device Programming

Availability of various menu sub items depends on the UPES status, availability of channel boards and availability and status of detectors. To enter the menu, press the "Prog." button. If UPES does not have channel boards, you can adjust only one menu "UPES Programming" (Fig. 2). In this mode you can set in UPES only these parameters: interface language, rate of exchange with the upper level system and UPES MODBUS address. To set the interface language, use the "Prog." to select menu or "Language". Use buttons "+" and "-" to select the desired language and press the "Test/Enter" button. To exit any menu item without setting the selected value, press the "Control" button.

Programming and Calibration of Values for UPES Measurement Channels

Valua	Gastype	Formu	MAX	ISO
v aiue	Oas type	la		
1	Methane	1CH4	0-2.2 vol%/50LEL	
2	Methane	2CH4	0-4.4	
3	Methane	3CH4	V01%/100LEL	0-5.0 vol%/100LEL
4	Propane	1PRO	0-0.85 vol%/50LEL	
5	Propane	2PRO	0-1.7 vol%/100LEL	
6	Propane	3PRO		0-2.1 vol%/100LEL
7	Hexane	1HEX	0-0.5 vol%/50LEL	
8	Hexane	2HEX	0-1.0 vol%/100LEL	
9	Hexane	3HEX		0-1.1 vol%/100LEL
10	Butane	1BUT	0-1.4 vol%/100LEL	
11	Butane	2BUT		0-1.6 vol%/100LEL
12	Isobutane	1ISB	0-1.3 vol%/100LEL	
13	Isobutane	2ISB		0-1.8 vol%
14	Pentane	1PNT	0-1.4 vol%/100LEL	
15	Pentane	2PNT		0-1.5 vol%/100LEL
16	Cyclopentan e	1CLP	0-1.4 vol%/100LEL	

according to Gas Type

17	Cyclopentan e	2CLP		0-1.1 vol%/100LEL
18	Ethanol	1ETL	0-3.1 vol%/100LEL	
19	Ethanol	2ETL		0-3.3 vol%/100LEL
20	Carbondioxi de 2	1CO2	0-2 vol%	
21	Carbondioxi de 5	2CO2	0-5 vol%	
22	Methanol	1MTL	0-5.5 vol%/100LEL	
23	Methanol	2MTL		0-6 vol%/100LEL
24	Isobuthylene 20	1IBL	0-20 ppm	
25	Isobuthylene 200	2IBL	0-200 ppm	
26	Isobuthylene 2000	3ISB	0-2000 ppm	
27	Ethylene = Ethene	1ETY	0-200mg/m3/171 ppm	
28	Ethylene = Ethene	2ETY	0-2.3 vol%/100LEL	
29	Ethylene = Ethene	3ETY		0-2.75 vol%/100LEL
30	Benzene	1BNL	0-30mg/m3/9.3 ppm	
31	Benzene	2BNL	0-1.2 vol%/100LEL	
32	Hydrogen	1 H2	0-2 vol%/50LEL	

22	TT 1	2.112	0-4.0	
55	Hydrogen	2 H2	vol%/100LEL	
34	Oxygen	O2	0-30 vol%	
35	Carbonmon	100	0-120mg/m3/103	
55	oxide	100	ppm	
36	Carbonmon	200	116mg/m3/100	
50	oxide	200	ppm	
37	Hydrogensul	1425	0_{-10} mg/m3/7ppm	
51	f 10	1112.5	0-10mg/m3/ / ppm	
38	Hydrogensul	2H2S	0-	
50	f 28	21125	28.4mg/m3/20ppm	
39	Hydrogensul	3H2S	0-45mg/m3/32ppm	
	f 45		• •••••• 9 ,••••• 9 ,•••	
40	Hydrogensul	4H2S	0-71mg/m3/50ppm	
	f 71		· · · · · · · · · · · · · · · · · · ·	
41	Hydrogensul	5H2S	0-85mg/m3/61	
	f 85		ppm	
42	Hydrogensul	6H2S	0-142mg/m3/100	
	f 142		ppm	
43	Nitrogendio	NO2	0-	
_	xide		20mg/m3/10.5ppm	
44	Sulfurdioxid	SO2	0-	
	e50		50mg/m3/18.8ppm	
45	Sulfurdioxid	SO2	53mg/m3/20ppm	
	e53			
46	Ammonia	1NH3	0-70mg/m3/99ppm	
	70			
47	Ammonia	2NH3	71mg/m3/100ppm	
	71		C 11	
	Ammonia		0-	
48	500	3NH3	500mg/m3/707pp	
			m	
49	Chlorine15	1CL2	0-15mg/m3/5ppm	
50	Chlorine30	2CL2	0-30mg/m3/10ppm	

51	Hydrogench	ИСІ	0-45 mg/m3/0-30	
51	loride	IICL	ppm	
50	Hydrogenflu	ЦЕ	0-8.2 mg/m3/0-10	
32	oride	пг	ppm	
52	Ethono	1ETN	0-2.5	
55	Eulane		vol%/100LEL	
54	Ethane	2ETN		0-3 vol%/100LEL
55	Acatona	ACT	0-2.5	
55	Acetone	Ν	vol%/100LEL	
56	Toluono	TIN	0-1.1	
50	Totuelle	I LIN	vol%/100LEL	
57	MTDE	MTB	0-1.5	
57	WIIDL	Е	vol%/100LEL	
58	Acetulana	1 A C N	0-1.15	
58	Acetylene	IACN	vol%/50LEL	
50	A		0-2.3	
39	Acetylene	ZACN	vol%/100LEL	
60	Methylmerc	MTM	0-8mg/m3/0-4	
00	aptan	С	ppm	
61	Ethylmercap	ETM	0-10 mg/m3/0-4	
01	tan	С	ppm	
62	Pronylana	DDDI	0-2.0	
02	Торугене	IKIL	vol%/100LEL	
63	Oil	OIL	100 % LEL	
64	Natural gas	NTGS	0-4.4	
04	Inatural gas	NIUS	vol%/100LEL	
65	Natural gas	NTGS		0-5.0
05	Tratulai gas	NIUS		vol%/100LEL
66	Gasoline	GAS	0-1 vol%/100LEL	
67	Kerosene	KER	0-	
			1.5vol%/100LEL	
68	White spirit	WTS	0-	
00	08 white spirit		1.4vol%/100LEL	
69	Diesel oil	DOIL	0-2vol%/100LEL	

70	Petrochemic	PTC	1001 EI	
70	al	М	TOOLEL	
71	Formaldehy	FML	0.10 mm	
/1	de	D	0-10 ppm	
70	Vinyl	VNA	0.100	
12	acetate	С	0-100 ppm	
73	Hentane	1HFP	0-1.1	
75	Tieptane	IIILI	vol%/100LEL	
74	Hentane	2HED		0-1.0
/ 4	Tieptane	211121		vol%/100LEL
75	Orthoxylene	10XI	0-1.0	
15	Offiloxylene	IOAL	vol%/100LEL	
76	Orthoxylene	2081		0-0.9
70	Offiloxylene	ZOAL		vol%/100LEL
77	Paravylana	PYVI	0-1.1	
11	1 araxytene	IAIL	vol%/100LEL	
78	Isopropanol	ISPI	0-2.0	
70	isopropation	191 L	vol%/100LEL	
70	Cyclohexan	1CI H	0-1.2	
	e	ICLII	vol%/100LEL	
80	Cyclohexan	2014		0-1.3
00	e	2CLII		vol%/100LEL
<u>81</u>	Ethylbenzen	1FTR	0-1.0	
01	e	ILID	vol%/100LEL	
82	Ethylbenzen	$2 \mathbf{ETB}$		0-0.8
02	e			vol%/100LEL
83	Petroleum	PETR	100LEL	
84		NO	0-125 mg/m3/0-	
04		INU	100 ppm	
85	IPES		18±0.1 mA	18±0.1 mA

7. Check of UPES Operation via RS-485 Communication Channel

In order to check threshold device operation with a computer via RS-485 communication channel, request the software program from ESP Safety Inc.

бор Порт	(корость	Nº M	lodbus	Language		Га	13	Них	кГран	ВерхГр	ан		Версия		1205
BC 50A ▼ COM3	•	9600	• 1	•	Русский	-	1	CH4	•	0	50	нпв		3.21.1	7	134
Канал	1	1	3	4	5	2	7	8	9	10	11	12	13	14	15	16
Концентрация	0	0	0	0	0	0	0	Norm	Нет карты	Нет карт						
Вкл Выкл										_						
Тревога 1				100							3					
Тревога 2								10								
Тревога 3			10					-								
Дефект			100				III	1								
1 nopor	20	22	29	11	25	26	2.0									
2 nopor	30	32	39	12	35	36	3.0									
3 порог	50	42	49	13	45	46	5.0									
Режим 1	Выше	Выше	Выше	Выше	Выше	Выше	Выше									
Режим 2	Выше	Выше	Выше	Выше	Выше	Выше	Выше		i i							
Задержка 1	5	4	25	28	13	16	5	22								
Задержка 2	5	5	26	29	14	17	5	23	D.							
Задержка З	5	6	27	30	15	18	5	24	i l							
Реле 1	Вкл	Вкл	Вкл	Вкл	Вкл	Вкл	Вкл	Вкл								
Реле 2	Вкл	Вкл	Вкл	Вкл	Вкл	Вкл	Вкл	Вкл	i							
Реле 3	Вкл	Вкл	Вкл	Вкл	Вкл	Вкл	Вкл	Вкл	i							
Подтвержд 1	ABT	ABT	ABT	ABT	ABT	ABT	ABT	ABT								
Подтвержд 2	ABT	ABT	ABT	ABT	ABT	ABT	ABT	ABT								
Подтвержд 3	ABT	ABT	ABT	ABT	ABT	ABT	ABT	ABT								
Газ	2CH4	2PRO	1158	2158	1HEX	2HEX	1CH4	FIRE		-	1					
Едизмерения	НПВ	НПВ	НПВ	НПВ	НПВ	НЛВ	06%									

Fig. 7. UPES program start of with IPES connected

Fig. 8. Program start of with gas detector connected

🚥 УПЭС-20,30,33,50,50A									×							
Прибор Порт	c	Скорость	Nº M	odbus	Language	2	<u>F</u> a	13	Ния	кГран Е	ЗерхГр	ан		Версия		19806:
УПЭС 50А 💌 СОМЗ		9600	- 1 -		Рисский	<u> </u>	1	CH4	•	0	50	НПВ		3.21.17	7	221:2
Канал	1	2	3	4	2 5	6	7	8	9	10	11	12	13	14	15	16
Концентрация	44	0	Нет карты	Нет карты	0	0	0	0	0	0	Нет карты					
Вкл Выкл																
Тревога 1																
Тревога 2																
Тревога 3																
Дефект																
1 порог	20	20			0	26	27	28	29	11						
2 порог	30	30			0	36	37	38	39	12		3				
3 порог	50	50			0	46	47	48	49	13	L					
Режим 1	Выше	Выше			Выше	Выше	Выше	Выше	Выше	Выше						
Режим 2	Выше	Выше			Выше	Выше	Выше	Выше	Выше	Выше						
Задержка 1	1	4			25	16	19	22	25	28						
Задержка 2	2	5			26	17	20	23	26	29						
Задержка З	3	6			27	18	21	24	27	30						
Реле 1	Вкл	Вкл			Вкл	Откл	Вкл	Вкл	Вкл	Вкл						
Реле 2	Вкл	Вкл			Вкл	Вкл	Вкл	Вкл	Вкл	Вкл						
Реле 3	Вкл	Вкл			Вкл	Откл	Вкл	Вкл	Вкл	Вкл						
Подтвержд.1	Авт	Авт			Авт	Авт	Авт	Авт	Авт	Авт						
Подтвержд.2	Авт	Авт			Авт	Авт	Авт	Авт	Авт	Авт						
Подтвержд.3	Авт	Авт			Авт	Авт	Авт	Авт	Авт	Авт						
Газ	2CH4	3CH4			2PRO	3PRO	1HEX	2HEX	3HEX	1BUT						
Ед.измерения	ΗΠΒ	ΗΠΒ			об%	НПВ	ΗΠΒ	ΗΠΒ	ΗΠΒ	НПВ						

In order to establish connection with the port (position 1), select a network number from the list (position 2) according to the UPES network number. If the connection is successful, settings of each channel are displayed. When pressing the cells with displayed current values (position 3) it is possible to change the values by selection data from the drop-down list or by manual input of data from the keyboard.

8. Common Troubles and Remedies

Trouble	Probable cause	Remedy
The channel is not	No power	Replace supply-line fuses,
displayed, LEDs do not	Defective supply-line fuse	installed inside the main plug
lit		on the power unit rear wall (2
	Failure of backup supply	A, 2 ea.).
	circuit	Replace supply-line fuses
		(12,5 A, 2 ea) installed on the
		power unit rear wall
Yellow LED glows	Communication line break	Recover the line
continuously	Defective detector	Repair or replace the detector
5	Signal from 0 mA to 1.8 mA	1 1
"No Signal" message is	6	
displayed		
Yellow LED glows		Repair or replace the detector
continuously		repair of replace the accessor
"Fault" message is	Defective detector	
displayed	Signal from 1.8 mA to 2.2 mA	
anspirayed		
Yellow LED glows		
continuously	Primary detector zero shift	Set zero, recalibrate the
"Need Calibration"	Signal from 2.2 mA to 3.5 mA	primary detector
message is displayed		
"Excess Over" message	Measurement exceeds the	Turn the channel OFF and ON.
is displayed	scale value	If the message is still
		displayed, recalibrate.
	Signal from 23 mA to 24 mA	The work shall be performed
		by a qualified specialist.
The LED does not lit	Defective LED	Replace the LED
when relay and audible		The work shall be performed
alarm trigger		by a qualified specialist.
The thresheld '-	Defective relev	Denois the module
The unreshold is	Defective relay	The work shall be performed
devises de pet estudio		by a qualified appealiat
devices do not actuate	Defective	by a quanned specialist.
	communication lines	
	communication lines	

9. Power cable. Connection diagram

10. Marking

The threshold device has the following marking:

- a) manufacturing plant trademark;
- b) UPES conventional designation;
- c) serial number;
- d) year of manufacture.

11. Transportation and Storage

11.1 UPES, packed by the manufacturer, can be transported at any distance by any means of transport. When transporting, it is necessary to ensure weather protection of the transport container with packed devices. Placement and securing of cargo in transport facilities shall ensure its stable position during transportation. Shifting of cargo during transportation is not permitted.

11.2 Rail wagons, containers and car bodies used to transport the device shall be free of any signs of cement, coal, chemicals etc.

11.3 UPES, packed by the manufacturer, during their guaranteed storage life shall be stored in premises free of dust, alkali/acid fumes, aggressive gases and other harmful impurities.

12. Acceptance Certificate

UPES-50Aunderwent running-in during 72 h and is found fit-for-service. Values of the operating thresholds for each channel are preconfigured if based on

customer's information, otherwise, all channels are set to methane as default.

13. Warranty

Warranties: ESP Safety Inc, 555 N. First Street San Jose, CA 95112 USA, guarantees the UPES system will be free of manufacturing defects for 5 years after date of commissioning, provided the customer follows all guidelines pertaining to installation, operation, and maintenance detailed in this Operating Manual. Unit Warranty During this warranty period, the manufacturer will correct any failures detected in the UPES system or replace any damaged unit free of charge. Expected Service Life of Unit The average expected life of the UPES system is no less than 10 years

14 Maintenance

14.1 UPES is intended for long-term continuous operation and requires special routine works to be implemented during operation. The list of routine maintenance is specified in Annex 6.

14.2 In case of any doubt in UPES operation validity, it is recommended to check the validity of channel programming. Channel programming shall be performed in accordance with the cyclogram specified in this manual. Programming of other UPES parameters shall be also performed in accordance with the cyclogram specified in this OM.

Annex 5. IPES and UPES Interconnection Diagram

Annex 6. Preventive Maintenance during UPES Operation

Preventive maintenance is the procedure and frequency of works on maintenance and restoration of UPES efficiency during its operation.

All types of performed works are classified into three subgroups:

1) maintenance;

2) technical repair;

3) major overhaul.

1 Maintenance. Maintenance includes:

- maintenance check;

- preventive inspection.

Maintenance check is performed by an EC&I engineer (or a person that replaces him/her) in order to timely detect and eliminate any malfunctions during operation.

The maintenance scope covers the following works:

1.1 Visual inspection of equipment.

1.2 Dust and dirt elimination.

1.3 Switching on test mode in order to check operability.

1.4 Minot troubleshooting.

1.5 Check of grounding.

1.6 Check of supply mains voltage.

1.7 Check of protection.

1.8 Check of harness and terminal connections state.

2 Technical repair. The scope of technical repair includes all maintenance operations plus the following works:

2.1 Opening of the threshold device.

2.2 Washing and cleaning of mechanical parts and contact connections.

2.3 Elimination of detected defects.

2.4 Cleaning of connectors.

2.5 Insulation withstand-voltage test.

2.6 Measurement of insulation resistance.

3 Major overhaul. The major overhaul includes all technical repair operations plus the

following works:

5.4 Replacement of individual channel modules and other assemblies by specialists authorized for such works.

Maintenance and Repair Frequency

Maintenance and repair shall be with the following frequency:

- maintenance check – every day;

- maintenance once per quarter;
- technical repair once pert year;
- major overhaul once per 5 years.